Philadelphia University Faculty of Engineering

Dept. of Electrical Engineering
 Final Exam, Summer Semester: 2014/2015

Course Title: Instrumentation and Measurement	Date: 31/8/2015 Course No: (610332)	Time Allowed: $\mathbf{2}$ Hours Lecturer: Dr. Mohammad Abu-Naser No. of Pages: $\mathbf{4}$

Question 1: \quad (4Mark)
Objectives: This question is related to DC ammeters
Ayrton shunt ammeter (Figure 1) has two resistors: $\mathrm{R}_{\mathrm{a}}=0.005 \Omega, \mathrm{R}_{\mathrm{b}}=0.045 \Omega$. The D'Arsonval movement has internal resistance $\mathrm{R}_{\mathrm{m}}=1000 \Omega$ and full scale deflection current $\mathrm{I}_{\mathrm{fsd}}=50 \mu \mathrm{~A}$. Calculate the two current ranges of the ammeter.

Question 2:
 (4Mark)
 Objectives: This question is related to rectifier-type AC voltmeter

A full-wave rectifier voltmeter has an internal resistance of 50Ω and full scale deflection current of 1 mA . Each diode has 50Ω forward resistance and infinite reverse resistance. As shown in Figure 2 for $10 \mathrm{~V}_{\text {rms }} \mathrm{AC}$ range, calculate:
a) The multiplier resistance R_{s}.
b) Voltmeter sensitivity on the AC range.

Question 3:
(7Mark)
Objectives: This question is related to digital voltmeters
a) Draw the block diagram of dual-slope digital voltmeter and name the main components.
b) If the integrator of the dual-slope digital voltmeter has a $100 \mathrm{k} \Omega$ resistor and $1 \mu \mathrm{~F}$ capacitor and the input voltage applied to the integrator is 1 V , what voltage will be present at the integrator output after $\mathrm{t}_{1}=1$ second?
c) Now if a reference voltage is applied to the integrator in the previous part (b) at time $t_{1}=1$ second is 5 volts in amplitude, what is the time interval of t_{2} ?

Question 4:

(6Mark)
Objectives: This question is related to Maxwell's bridge and error calculations
A Maxwell's bridge is used to determine the self-inductance and the effective resistance of a coil. Under balance conditions the limiting values of various elements are:

$$
R_{l}=1000 \Omega \pm 1 \%, \mathrm{C}_{1}=0.5 \mu \mathrm{~F} \pm 1 \%, R_{2}=1000 \Omega \pm 1 \%, R_{3}=1000 \Omega \pm 1 \%
$$

Calculate:
a) The value of the self-inductance $\left(\mathrm{L}_{4}\right)$ and effective resistance $\left(\mathrm{R}_{4}\right)$.
b) The limiting errors of both L_{4} and R_{4} in percent.
c) The limiting errors of both L_{4} and R_{4} in henry and ohm, respectively.

Objectives: This question is related to temperature transducers
At room temperature $\left(25^{\circ} \mathrm{C}\right)$, the voltmeter in Figure 3 gives a reading of 6 V . The temperature of a material is sensed using platinum RTD and the voltmeter reading changed to 2.4 V . If the internal resistance of the voltmeter is 120Ω and $\alpha=0.00392 /{ }^{\circ} \mathrm{C}$, determine the temperature of the measured material.

Question 6:

(5Mark)
Objectives: This question is related to capacitive transducers
A parallel plate capacitive transducer uses plates of area $250 \mathrm{~mm}^{2}$ which are separated by a distance of 0.2 mm .
a) Calculate the value of capacitance when the dielectric is air having a permittivity of $8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.
b) Calculate the change in capacitance if a displacement reduces the distance between the plates to 0.18 mm .

Question 7: (8Mark)
Objectives: This question is related to multiple choices

1) In a permanent magnet moving coil ammeter the deflection of the pointer is proportional to the magnetic flux density produced by the permanent magnet. If the strength of the permanent magnet becomes 95% of the original, the meter gives erroneous reading. This error is classified as:
a) Gross error.
b) Systematic error.
c) Random error.
d) None of the above.
2) For the Lissajous in Figure 4, the phase angle is:
a) 0°
b) 30°
c) 45°
d) 60°
3) The voltage of a circuit is measured by a voltmeter having small impedance therefore causing error in measured voltage. This error is called
a) Random error.
b) Environmental error.
c) Error caused by loading effect.
d) None of the above.
4) Maxwell's bridge is used to measure inductance of:
a) Low Q coil.
b) Medium Q coil.
c) High Q coil.
d) Low and medium Q coils.
5) Frequency can be measured using:
a) Anderson's bridge.
b) Wien's bridge.
c) Wheatstone bridge.
d) Hay's bridge.
6) The order in which the three types of temperature transducers exhibit sensitivity (highest to lowest) is:
a) Thermistors, RTDs, thermocouples.
b) Thermocouples, RTDs, thermistors.
c) RTDs, thermistors, thermocouples.
d) RTDs, thermocouples, thermistors.
7) The Lissajous pattern observed on screen of oscilloscope is a straight line inclined at 45° to x -axis. If ' X ' plate input is $2 \sin \omega t$, the ' Y ' plate input is
a) $2 \sin (\omega \mathrm{t})$.
b) $2 \sin \left(\omega t+45^{\circ}\right)$.
c) $2 \sin \left(\omega t-45^{\circ}\right)$.
d) $2 \sqrt{ } 2 \sin \left(\omega t+45^{\circ}\right)$.
8) Input to the ' Y ' plate of oscilloscope is a signal defined by $10 \sin 100 t$. Input to the ' X ' plate is the signal $10 \cos 100 \mathrm{t}$. The gain for both X -channel and Y channel is the same. The screen shows:
a) A straight line.
b) Sinisoidal.
c) An ellipse.
d) A circle.

Good luck

Figure 1

Figure 2

Figure 3

Figure 4

Philadelphia University Faculty of Engineering

Dept. of Electrical Engineering
 Final Exam, Summer Semester: 2014/2015

Course Title: Instrumentation and Measurement	Date: 31/8/2015	
Course No: \quad (610332)	Time Allowed: $\mathbf{2}$ Hours	
Lerm	Form B	

Question 1:
(4Mark)
Objectives: This question is related to DC ammeters
Ayrton shunt ammeter (Figure 1) has two resistors: $\mathrm{R}_{\mathrm{a}}=0.005 \Omega, \mathrm{R}_{\mathrm{b}}=0.045 \Omega$. The D'Arsonval movement has internal resistance $\mathrm{R}_{\mathrm{m}}=1000 \Omega$ and full scale deflection current $\mathrm{I}_{\mathrm{fsd}}=50 \mu \mathrm{~A}$. Calculate the two current ranges of the ammeter.

Question 2:
 (4Mark)
 Objectives: This question is related to rectifier-type AC voltmeter

A full-wave rectifier voltmeter has an internal resistance of 50Ω and full scale deflection current of 1 mA . Each diode has 50Ω forward resistance and infinite reverse resistance. As shown in Figure 2 for $10 \mathrm{~V}_{\text {rms }} \mathrm{AC}$ range, calculate:
a) The multiplier resistance R_{s}.
b) Voltmeter sensitivity on the AC range.

Question 3:
(7Mark)
Objectives: This question is related to digital voltmeters
a) Draw the block diagram of dual-slope digital voltmeter and name the main components.
b) If the integrator of the dual-slope digital voltmeter has a $100 \mathrm{k} \Omega$ resistor and $1 \mu \mathrm{~F}$ capacitor and the input voltage applied to the integrator is 1 V , what voltage will be present at the integrator output after $\mathrm{t}_{1}=1$ second?
c) Now if a reference voltage is applied to the integrator in the previous part (b) at time $t_{1}=1$ second is 5 volts in amplitude, what is the time interval of t_{2} ?

Question 4:

(6Mark)
Objectives: This question is related to Maxwell's bridge and error calculations
A Maxwell's bridge is used to determine the self-inductance and the effective resistance of a coil. Under balance conditions the limiting values of various elements are:

$$
R_{l}=1000 \Omega \pm 1 \%, \mathrm{C}_{1}=0.5 \mu \mathrm{~F} \pm 1 \%, R_{2}=1000 \Omega \pm 1 \%, R_{3}=1000 \Omega \pm 1 \%
$$

Calculate:
a) The value of the self-inductance $\left(\mathrm{L}_{4}\right)$ and effective resistance $\left(\mathrm{R}_{4}\right)$.
b) The limiting errors of both L_{4} and R_{4} in percent.
c) The limiting errors of both L_{4} and R_{4} in henry and ohm, respectively.

Objectives: This question is related to temperature transducers

At room temperature $\left(25^{\circ} \mathrm{C}\right)$, the voltmeter in Figure 3 gives a reading of 6 V . The temperature of a material is sensed using platinum RTD and the voltmeter reading changed to 2.4 V . If the internal resistance of the voltmeter is 120Ω and $\alpha=0.00392 /{ }^{\circ} \mathrm{C}$, determine the temperature of the measured material.

Question 6:

(5Mark)

Objectives: This question is related to capacitive transducers

A parallel plate capacitive transducer uses plates of area $250 \mathrm{~mm}^{2}$ which are separated by a distance of 0.2 mm .
a) Calculate the value of capacitance when the dielectric is air having a permittivity of $8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.
b) Calculate the change in capacitance if a displacement reduces the distance between the plates to 0.18 mm .

Question 7:
(8Mark)
Objectives: This question is related to multiple choices

1) Capacitive transducers can be used for measurement of liquid level. The principle of operation used in this case is:
a) Change of capacitance with change of distance between plates.
b) Change of area of plates.
c) Change of dielectric constant.
d) None of the above.
2) For the Lissajous in Figure 4, the phase angle is:
a) 0°
b) 30°
c) 45°
d) 60°
3) Errors due to human mistakes are:
a) Gross.
b) Systematic.
c) Instrumental.
d) Random.
4) The advantage of Hay's bridge over Mawell's bridge:
a) Its equations for balance do not contain any frequency terms.
b) It can be used for measurement of inductance with low Q values.
c) It can be used for measurement of inductance with high Q values.
d) None of the above.
5) The resistance of a thermistor:
a) Increases with increase in temperature.
b) remains constant irrespective of the temperature.
c) Decrease with increase in temperature in a linear manner.
d) Decrease with increase in temperature in an exponential manner.
6) Platinum is commonly used in RTDs because:
a) It has a constant value of resistance temperature coefficient of $0.00392 /^{\circ} \mathrm{C}$ for temperature ranges between $100^{\circ} \mathrm{C}$ to $650^{\circ} \mathrm{C}$.
b) It is very pure and accurate over large range of temperatures.
c) It is very inert and can maintain stability for many years.
d) All of the above.
7) The Lissajous pattern observed on screen of oscilloscope is a straight line inclined at 135° to x -axis. If ' X ' plate input is $2 \sin \omega$ t, the ' Y ' plate input is:
a) $2 \sin (\omega \mathrm{t})$.
b) $-2 \sin (\omega \mathrm{t})$.
c) $2 \sin \left(\omega t-45^{\circ}\right)$.
d) $2 \sqrt{ } 2 \sin \left(\omega t+45^{\circ}\right)$.
8) Two in phase, 50 Hz sinusoidal waveforms of unit amplitude are fed into channel 1 and channel 2 respectively of an oscilloscope. Assuming that the voltage scale, time scale and other settings are exactly the same for both channels, what would be observed if the oscilloscope is operated in X-Y mode?
a) A straight line inclined at 45° with respect to the X -axis
b) A circle of unit radius.
c) An ellipse.
d) A parabola

Good luck

Figure 1

Figure 2

Figure 3

Figure 4

Instrumentation and Measurement
Final Exam
Summer Semester $2014 / 2015$
QT
Range Ia

$$
\begin{gathered}
\left(R_{a}\right) \|\left(R_{b}+R_{m}\right) \\
I_{m}\left(R_{b}+R_{m}\right)=\left(I_{a}-I_{m}\right) R_{a} \\
\cdot 50 \times 6^{-6}(1045+1000)=\left(I_{\left.a-50 \times 10^{-6}\right)} .005\right. \\
.05000225=.005 I_{a}-2.5 \times 10^{-7} \\
.005 I_{a}=.0500025 \\
\Rightarrow I_{a}=10 \mathrm{~A}
\end{gathered}
$$

Range I_{b}

$$
\begin{aligned}
& \left(R_{a}+R_{b}\right) \| R_{m} \\
& I_{m} R_{m}=\left(I_{b}-I_{n}\right)\left(R_{a}+R_{b}\right) \\
& 50 \times 10^{-6} \times 1000=\left(I_{b}-50 \times 10^{-6}\right)(.005+.045) \\
& 105=105 I_{b}-2.5 \times 10^{-6} \\
& 05 I_{b}=10500025 \\
& \Rightarrow I_{b}=1 \mathrm{~A} .
\end{aligned}
$$

Q2
a)

$$
\begin{aligned}
V_{\text {ave }} & =0.9 \times V_{\text {mus }} \\
& =0.9 \times 10=9 \mathrm{~V} \\
R_{\text {tot }} & =\frac{9 \mathrm{~V}}{1 \mathrm{~mA}}=9000 \Omega \\
R_{s} & =R_{\text {total }}-R_{m}-2 R_{0} \\
& =9600-50-2 \times 50 \\
& =8850 \Omega
\end{aligned}
$$

b) $S_{A C}=\frac{R_{\text {roll }}}{V_{\text {rms }}}=\frac{9000}{10}=900 \Omega / V$.

b)

$$
\begin{aligned}
V_{\text {out }}= & \frac{V_{\text {in }} t_{1}}{R C} \\
& =\frac{1 * 1}{100 \times 10^{3} * 1 \times 10^{-6}}=10 \mathrm{~V}
\end{aligned}
$$

c) $\frac{t_{2}}{t_{1}}=\frac{V_{\text {in }}}{V_{\text {ret }}} \Rightarrow t_{2}=\frac{V_{\text {in }}}{V_{\text {ret }}} \cdot t_{1}=\frac{1}{5} * 1=0.2$ scooves.

Q4
a)

$$
\begin{aligned}
& R_{4}=\frac{R_{2} R_{3}}{R_{1}}=\frac{(1000 \pm 1)(1000 \pm 1 \%)}{(1000 \pm \%)}=1000 \pm 3 \% \\
& L_{4}=R_{2} R_{3} C_{1}=(1000 \pm 1 \%)(1000 \pm)\left(0.5 * 10^{-6} \pm 1 \%\right) \\
& =0.5 \pm 3 \% \\
& \therefore R_{4}=1000 \Omega \\
& L_{4}=0.5 \mathrm{H}
\end{aligned}
$$

b) Limiting erar of R_{4} is 3\rangle

Limiting erar of L_{4} is 3\%
c) Limiting enor of $R_{4}=\frac{3}{100} \times 1000=30 \Omega$

Limiting erar of $L_{4}=\frac{3}{1000} \times 0.5=0.015 \mathrm{H}$

Q5

$$
\begin{aligned}
R_{\rho} & =1000 / / 120 \\
& =107.14 \Omega
\end{aligned}
$$

At $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
V_{\text {measuad }} & =V \times \frac{R_{P}}{R_{\text {ratal }}} \\
6 & =20 \times \frac{107.14}{R_{R T D}+107.14} \\
6 R_{R T D} & =14 \times 107.14=1500 \Omega \\
R_{R T D} & =\frac{1500}{6}=250 \Omega
\end{aligned}
$$

At material temperature

$$
\begin{aligned}
& 2.4=20 \times \frac{107.14}{R_{R T D}+107.14} \\
& 2.4 R_{R T D}=17.6 \times 107.14=1886 \Omega \\
& \quad R_{\text {RTD. }}=\frac{1886}{2.4}=785.7 \Omega \\
& \therefore R_{\text {mataial }}=R_{25^{\circ} \mathrm{C}}[1+0.00392 \Delta T] \\
& 785.7=250[1+0.00392 \Delta T] \\
& \Rightarrow \Delta T=546.6^{\circ} \mathrm{C} \\
& \Rightarrow T=546.6+25=571.6^{\circ} \mathrm{C}
\end{aligned}
$$

Qb
a)

$$
\begin{aligned}
C_{1} & =\frac{\varepsilon A}{d_{1}} \\
& =\frac{8.85 \times 10^{-12} * 250.10^{-6}}{0.2 \times 10^{-3}} \\
& =11.06 \mathrm{PF}
\end{aligned}
$$

b)

$$
\begin{aligned}
C_{2} & =\frac{\varepsilon A}{d_{2}} \\
& =\frac{8.85 \times 10^{-12} \times 250 \times 10^{-6}}{0.18 \times 10^{-3}} \\
& =12.29 \mathrm{f} \\
\Delta C & =12.29-11.06=1.23 \mathrm{pF}
\end{aligned}
$$

Q 7
Form A: 1) b 2) $($ 3) $($ 4) b 5) b 6) a 7) a 8) d Form B: 1) c 2) b 3) a 4) c 5) d
6) d
7) b 8) a

